Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Cell ; 84(6): 1139-1148.e5, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452765

RESUMO

Eukaryotic genomes are folded into DNA loops mediated by structural maintenance of chromosomes (SMC) complexes such as cohesin, condensin, and Smc5/6. This organization regulates different DNA-related processes along the cell cycle, such as transcription, recombination, segregation, and DNA repair. During the G2 stage, SMC-mediated DNA loops coexist with cohesin complexes involved in sister chromatid cohesion (SCC). However, the articulation between the establishment of SCC and the formation of SMC-mediated DNA loops along the chromatin remains unknown. Here, we show that SCC is indeed a barrier to cohesin-mediated DNA loop expansion along G2/M Saccharomyces cerevisiae chromosomes.


Assuntos
Proteínas Cromossômicas não Histona , Proteínas de Saccharomyces cerevisiae , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Coesinas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(12): e2312820121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478689

RESUMO

Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Cromossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Recombinação Homóloga/genética , Meiose/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
G3 (Bethesda) ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38537260

RESUMO

The European green woodpecker, Picus viridis, is a widely distributed species found in the Western Palearctic region. Here, we assembled a highly contiguous genome assembly for this species using a combination of short- and long-read sequencing and scaffolded with chromatin conformation capture (Hi-C). The final genome assembly was 1.28 Gb and features a scaffold N50 of 37 Mb and a scaffold L50 of 39.165 Mb. The assembly incorporates 89.4% of the genes identified in birds in OrthoDB. Gene and repetitive content annotation on the assembly detected 15,805 genes and a ∼30.1% occurrence of repetitive elements, respectively. Analysis of synteny demonstrates the fragmented nature of the P. viridis genome when compared to the chicken (Gallus gallus). The assembly and annotations produced in this study will certainly help for further research into the genomics of P. viridis and the comparative evolution of woodpeckers. Five historical and seven contemporary samples have been resequenced and may give insights on the population history of this species.


Assuntos
Aves , Genoma , Genômica , Anotação de Sequência Molecular , Animais , Aves/genética , Genômica/métodos , Cromossomos/genética , Sintenia , Mapeamento Cromossômico , Sequências Repetitivas de Ácido Nucleico , Galinhas/genética
4.
Nat Struct Mol Biol ; 31(3): 489-497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177686

RESUMO

Transcription generates local topological and mechanical constraints on the DNA fiber, leading to the generation of supercoiled chromosome domains in bacteria. However, the global impact of transcription on chromosome organization remains elusive, as the scale of genes and operons in bacteria remains well below the resolution of chromosomal contact maps generated using Hi-C (~5-10 kb). Here we combined sub-kb Hi-C contact maps and chromosome engineering to visualize individual transcriptional units. We show that transcriptional units form discrete three-dimensional transcription-induced domains that impose mechanical and topological constraints on their neighboring sequences at larger scales, modifying their localization and dynamics. These results show that transcriptional domains constitute primary building blocks of bacterial chromosome folding and locally impose structural and dynamic constraints.


Assuntos
Cromossomos Bacterianos , Cromossomos , Cromossomos Bacterianos/genética , DNA
5.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260645

RESUMO

Viruses compete with each other for limited cellular resources, and some viruses deliver defense mechanisms that protect the host from competing genetic parasites. PARIS is a defense system, often encoded in viral genomes, that is composed of a 53 kDa ABC ATPase (AriA) and a 35 kDa TOPRIM nuclease (AriB). Here we show that AriA and AriB assemble into a 425 kDa supramolecular immune complex. We use cryo-EM to determine the structure of this complex which explains how six molecules of AriA assemble into a propeller-shaped scaffold that coordinates three subunits of AriB. ATP-dependent detection of foreign proteins triggers the release of AriB, which assembles into a homodimeric nuclease that blocks infection by cleaving the host tRNALys. Phage T5 subverts PARIS immunity through expression of a tRNALys variant that prevents PARIS-mediated cleavage, and thereby restores viral infection. Collectively, these data explain how AriA functions as an ATP-dependent sensor that detects viral proteins and activates the AriB toxin. PARIS is one of an emerging set of immune systems that form macromolecular complexes for the recognition of foreign proteins, rather than foreign nucleic acids.

7.
Cell Genom ; 3(11): 100439, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020967

RESUMO

We designed and synthesized synI, which is ∼21.6% shorter than native chrI, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns surrounding potential instability and karyotype imbalance and is now attached to synIII, yielding the first synthetic yeast fusion chromosome. Additional fusion chromosomes were constructed to study nuclear function. ChrIII-I and chrIX-III-I fusion chromosomes have twisted structures, which depend on silencing protein Sir3. As a smaller chromosome, chrI also faces special challenges in assuring meiotic crossovers required for efficient homolog disjunction. Centromere deletions into fusion chromosomes revealed opposing effects of core centromeres and pericentromeres in modulating deposition of the crossover-promoting protein Red1. These effects extend over 100 kb and promote disproportionate Red1 enrichment, and thus crossover potential, on small chromosomes like chrI. These findings reveal the power of synthetic genomics to uncover new biology and deconvolute complex biological systems.

8.
Nat Commun ; 14(1): 4485, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495586

RESUMO

Anosmia was identified as a hallmark of COVID-19 early in the pandemic, however, with the emergence of variants of concern, the clinical profile induced by SARS-CoV-2 infection has changed, with anosmia being less frequent. Here, we assessed the clinical, olfactory and neuroinflammatory conditions of golden hamsters infected with the original Wuhan SARS-CoV-2 strain, its isogenic ORF7-deletion mutant and three variants: Gamma, Delta, and Omicron/BA.1. We show that infected animals develop a variant-dependent clinical disease including anosmia, and that the ORF7 of SARS-CoV-2 contributes to the induction of olfactory dysfunction. Conversely, all SARS-CoV-2 variants are neuroinvasive, regardless of the clinical presentation they induce. Taken together, this confirms that neuroinvasion and anosmia are independent phenomena upon SARS-CoV-2 infection. Using newly generated nanoluciferase-expressing SARS-CoV-2, we validate the olfactory pathway as a major entry point into the brain in vivo and demonstrate in vitro that SARS-CoV-2 travels retrogradely and anterogradely along axons in microfluidic neuron-epithelial networks.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , COVID-19/virologia , SARS-CoV-2/genética , Genoma Viral , Axônios/virologia , Bulbo Olfatório/virologia , Internalização do Vírus , Carga Viral , Variação Genética
9.
Elife ; 112022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36196991

RESUMO

Chromosome segregation requires both the separation of sister chromatids and the sustained condensation of chromatids during anaphase. In yeast cells, cohesin is not only required for sister chromatid cohesion but also plays a major role determining the structure of individual chromatids in metaphase. Separase cleavage is thought to remove all cohesin complexes from chromosomes to initiate anaphase. It is thus not clear how the length and organisation of segregating chromatids is maintained during anaphase in the absence of cohesin. Here, we show that degradation of cohesin at the anaphase onset causes aberrant chromatid segregation. Hi-C analysis on segregating chromatids demonstrates that cohesin depletion causes loss of intrachromatid organisation. Surprisingly, tobacco etch virus (TEV)-mediated cleavage of cohesin does not dramatically disrupt chromatid organisation in anaphase, explaining why bulk segregation is achieved. In addition, we identified a small pool of cohesin complexes bound to telophase chromosomes in wild-type cells and show that they play a role in the organisation of centromeric regions. Our data demonstrates that in yeast cells cohesin function is not over in metaphase, but extends to the anaphase period when chromatids are segregating.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromossômicas não Histona , Saccharomyces cerevisiae , Anáfase/genética , Cromátides , Cromatina/química , Cromatina/metabolismo , Saccharomyces cerevisiae/genética , Separase/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
10.
Genome Res ; 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109147

RESUMO

The unicellular amoeba Acanthamoeba castellanii is ubiquitous in aquatic environments, where it preys on bacteria. The organism also hosts bacterial endosymbionts, some of which are parasitic, including human pathogens such as Chlamydia and Legionella spp. Here we report complete, high-quality genome sequences for two extensively studied A. castellanii strains, Neff and C3. Combining long- and short-read data with Hi-C, we generated near chromosome-level assemblies for both strains with 90% of the genome contained in 29 scaffolds for the Neff strain and 31 for the C3 strain. Comparative genomics revealed strain-specific functional enrichment, most notably genes related to signal transduction in the C3 strain and to viral replication in Neff. Furthermore, we characterized the spatial organization of the A. castellanii genome and showed that it is reorganized during infection by Legionella pneumophila Infection-dependent chromatin loops were found to be enriched in genes for signal transduction and phosphorylation processes. In genomic regions where chromatin organization changed during Legionella infection, we found functional enrichment for genes associated with metabolism, organelle assembly, and cytoskeleton organization. Given Legionella infection is known to alter its host's cell cycle, to exploit the host's organelles, and to modulate the host's metabolism in its favor, these changes in chromatin organization may partly be related to mechanisms of host control during Legionella infection.

11.
Cell Genom ; 2(8): None, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35983101

RESUMO

Eukaryotic genomes vary in terms of size, chromosome number, and genetic complexity. Their temporal organization is complex, reflecting coordination between DNA folding and function. Here, we used fused karyotypes of budding yeast to characterize the effects of chromosome length on nuclear architecture. We found that size-matched megachromosomes expand to occupy a larger fraction of the enlarged nucleus. Hi-C maps reveal changes in the three-dimensional structure corresponding to inactivated centromeres and telomeres. De-clustering of inactive centromeres results in their loss of early replication, highlighting a functional correlation between genome organization and replication timing. Repositioning of former telomere-proximal regions on chromosome arms exposed a subset of contacts between flocculin genes. Chromatin reorganization of megachromosomes during cell division remained unperturbed, and it revealed that centromere-rDNA contacts in anaphase, extending over 0.3 Mb on wild-type chromosome, cannot exceed ∼1.7 Mb. Our results highlight the relevance of engineered karyotypes to unveiling relationships between genome organization and function.

12.
J Mol Biol ; 434(7): 167497, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189129

RESUMO

The artificial 601 DNA sequence is often used to constrain the position of nucleosomes on a DNA molecule in vitro. Although the ability of the 147 base pair sequence to precisely position a nucleosome in vitro is well documented, application of this property in vivo has been explored only in a few studies and yielded contradictory conclusions. Our goal in the present study was to test the ability of the 601 sequence to dictate nucleosome positioning in Saccharomyces cerevisiae in the context of a long tandem repeat array inserted in a yeast chromosome. We engineered such arrays with three different repeat size, namely 167, 197 and 237 base pairs. Although our arrays are able to position nucleosomes in vitro, analysis of nucleosome occupancy in vivo revealed that nucleosomes are not preferentially positioned as expected on the 601-core sequence along the repeats and that the measured nucleosome repeat length does not correspond to the one expected by design. Altogether our results demonstrate that the rules defining nucleosome positions on this DNA sequence in vitro are not valid in vivo, at least in this chromosomal context, questioning the relevance of using the 601 sequence in vivo to achieve precise nucleosome positioning on designer synthetic DNA sequences.


Assuntos
Nucleossomos , Saccharomyces cerevisiae , Sequências de Repetição em Tandem , Montagem e Desmontagem da Cromatina , DNA Fúngico/genética , DNA Fúngico/metabolismo , Engenharia Genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequências de Repetição em Tandem/genética
13.
Methods Mol Biol ; 2301: 183-195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34415536

RESUMO

During the past decade, Chromosome Conformation Capture (3C/Hi-C)-based methods have been used to probe the 3D structure and organization of bacterial genomes, revealing fundamental aspects of chromosome dynamics. However, the current protocols are expensive, inefficient, and limited in their resolution. Here we present a simple, cost-effective Hi-C approach that is readily applicable to a range of Gram-positive and Gram-negative bacteria.


Assuntos
Bactérias Gram-Negativas , Bactérias Gram-Positivas , Antibacterianos , Bactérias/genética , Cromossomos , Bactérias Gram-Negativas/genética , Software
14.
Genes (Basel) ; 12(11)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34828283

RESUMO

Novel, large-scale structural mutations were previously discovered during the cultivation of engineered Saccharomyces cerevisiae strains in which essential tRNA synthetase genes were replaced by their orthologs from the distantly related yeast Yarrowia lipolytica. Among those were internal segmental amplifications forming giant chromosomes as well as complex segmental rearrangements associated with massive amplifications at an unselected short locus. The formation of such novel structures, whose stability is high enough to propagate over multiple generations, involved short repeated sequences dispersed in the genome (as expected), but also novel junctions between unrelated sequences likely triggered by accidental template switching within replication forks. Using the same evolutionary protocol, we now describe yet another type of major structural mutation in the yeast genome, the formation of neochromosomes, with functional centromeres and telomeres, made of extra copies of very long chromosomal segments ligated together in novel arrangements. The novel junctions occurred between short repeated sequences dispersed in the genome. They first resulted in the formation of an instable neochromosome present in a single copy in the diploid cells, followed by its replacement by a shorter, partially palindromic neochromosome present in two copies, whose stability eventually increased the chromosome number of the diploid strains harboring it.


Assuntos
Cromossomos Fúngicos/metabolismo , Evolução Molecular Direcionada/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Genoma Fúngico , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Sequenciamento Completo do Genoma
15.
Nat Cell Biol ; 23(11): 1176-1186, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750581

RESUMO

Homologous recombination repairs DNA double-strand breaks (DSB) using an intact dsDNA molecule as a template. It entails a homology search step, carried out along a conserved RecA/Rad51-ssDNA filament assembled on each DSB end. Whether, how and to what extent a DSB impacts chromatin folding, and how this (re)organization in turns influences the homology search process, remain ill-defined. Here we characterize two layers of spatial chromatin reorganization following DSB formation in Saccharomyces cerevisiae. Although cohesin folds chromosomes into cohesive arrays of ~20-kb-long chromatin loops as cells arrest in G2/M, the DSB-flanking regions interact locally in a resection- and 9-1-1 clamp-dependent manner, independently of cohesin, Mec1ATR, Rad52 and Rad51. This local structure blocks cohesin progression, constraining the DSB region at the base of a loop. Functionally, cohesin promotes DSB-dsDNA interactions and donor identification in cis, while inhibiting them in trans. This study identifies multiple direct and indirect ways by which cohesin regulates homology search during recombinational DNA repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
16.
STAR Protoc ; 2(2): 100512, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027477

RESUMO

Chromosome conformation capture (Hi-C) has become a routine method for probing the 3D organization of genomes. However, when applied to bacteria and archaea, current protocols are expensive and limited in their resolution. By dissecting the different steps of published eukaryotic and prokaryotic Hi-C protocols, we have developed a cost- and time-effective approach to generate high-resolution (down to 500 bp - 1 kb) contact matrices of both bacteria and archaea genomes. For complete details on the use and execution of this protocol, please refer to Cockram et al. (2020).


Assuntos
Archaea/genética , Bactérias/genética , Mapeamento Cromossômico , Cromossomos de Archaea/genética , Cromossomos Bacterianos/genética , Genoma Arqueal , Genoma Bacteriano
17.
Elife ; 102021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33634788

RESUMO

Bacteriophages play important roles in regulating the intestinal human microbiota composition, dynamics, and homeostasis, and characterizing their bacterial hosts is needed to understand their impact. We applied a metagenomic Hi-C approach on 10 healthy human gut samples to unveil a large infection network encompassing more than 6000 interactions bridging a metagenomic assembled genomes (MAGs) and a phage sequence, allowing to study in situ phage-host ratio. Whereas three-quarters of these sequences likely correspond to dormant prophages, 5% exhibit a much higher coverage than their associated MAG, representing potentially actively replicating phages. We detected 17 sequences of members of the crAss-like phage family, whose hosts diversity remained until recently relatively elusive. For each of them, a unique bacterial host was identified, all belonging to different genus of Bacteroidetes. Therefore, metaHiC deciphers infection network of microbial population with a high specificity paving the way to dynamic analysis of mobile genetic elements in complex ecosystems.


Assuntos
Bactérias/virologia , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Genoma Viral , Metagenoma , Prófagos/fisiologia , Bactérias/genética , Humanos , Metagenômica , Prófagos/genética
18.
Mol Cell ; 81(3): 459-472.e10, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382984

RESUMO

Hi-C has become a routine method for probing the 3D organization of genomes. However, when applied to prokaryotes and archaea, the current protocols are expensive and limited in their resolution. We develop a cost-effective Hi-C protocol to explore chromosome conformations of these two kingdoms at the gene or operon level. We first validate it on E. coli and V. cholera, generating sub-kilobase-resolution contact maps, and then apply it to the euryarchaeota H. volcanii, Hbt. salinarum, and T. kodakaraensis. With a resolution of up to 1 kb, we explore the diversity of chromosome folding in this phylum. In contrast to crenarchaeota, these euryarchaeota lack (active/inactive) compartment-like structures. Instead, their genomes are composed of self-interacting domains and chromatin loops. In H. volcanii, these structures are regulated by transcription and the archaeal structural maintenance of chromosomes (SMC) protein, further supporting the ubiquitous role of these processes in shaping the higher-order organization of genomes.


Assuntos
Compartimento Celular , Cromatina/genética , Cromossomos de Archaea , DNA Arqueal/genética , Euryarchaeota/genética , Genoma Arqueal , Transcrição Gênica , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica em Archaea , Halobacterium salinarum/genética , Haloferax volcanii/genética , Motivos de Nucleotídeos , Filogenia , Thermococcus/genética
19.
Bioinformatics ; 36(12): 3645-3651, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311033

RESUMO

MOTIVATION: Hi-C contact maps reflect the relative contact frequencies between pairs of genomic loci, quantified through deep sequencing. Differential analyses of these maps enable downstream biological interpretations. However, the multi-fractal nature of the chromatin polymer inside the cellular envelope results in contact frequency values spanning several orders of magnitude: contacts between loci pairs separated by large genomic distances are much sparser than closer pairs. The same is true for poorly covered regions, such as repeated sequences. Both distant and poorly covered regions translate into low signal-to-noise ratios. There is no clear consensus to address this limitation. RESULTS: We present Serpentine, a fast, flexible procedure operating on raw data, which considers the contacts in each region of a contact map. Binning is performed only when necessary on noisy regions, preserving informative ones. This results in high-quality, low-noise contact maps that can be conveniently visualized for rigorous comparative analyses. AVAILABILITY AND IMPLEMENTATION: Serpentine is available on the PyPI repository and https://github.com/koszullab/serpentine; documentation and tutorials are provided at https://serpentine.readthedocs.io/en/latest/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Cromatina , Genômica
20.
Mol Cell ; 77(6): 1279-1293.e4, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32032532

RESUMO

Cohesin, a member of the SMC complex family, holds sister chromatids together but also shapes chromosomes by promoting the formation of long-range intra-chromatid loops, a process proposed to be mediated by DNA loop extrusion. Here we describe the roles of three cohesin partners, Pds5, Wpl1, and Eco1, in loop formation along either unreplicated or mitotic Saccharomyces cerevisiae chromosomes. Pds5 limits the size of DNA loops via two different pathways: the canonical Wpl1-mediated releasing activity and an Eco1-dependent mechanism. In the absence of Pds5, the main barrier to DNA loop expansion appears to be the centromere. Our data also show that Eco1 acetyl-transferase inhibits the translocase activity that powers loop formation and contributes to the positioning of loops through a mechanism that is distinguishable from its role in cohesion establishment. This study reveals that the mechanisms regulating cohesin-dependent chromatin loops are conserved among eukaryotes while promoting different functions.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Mitose , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA